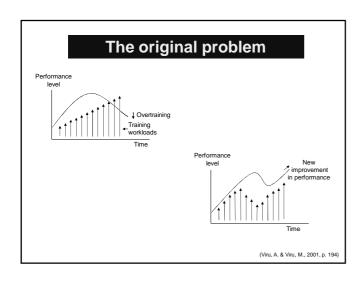
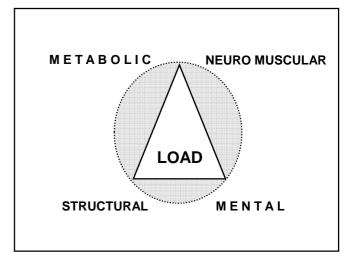
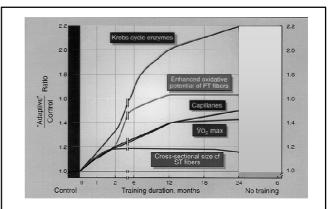

Periodisation


(Definition from HARRE, based on MATWEJEW)

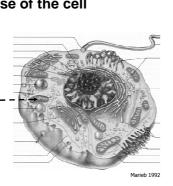

"Periodisation is the continuing result of periodic cycles in the process to create a sport performance ability. Each single periodic cycle is characterized by a licit caused periodic change of (training) aims, tasks and content as well as characterizes therefore the structure of the training".

(translated from HARRE, 1986, 99ff)



The problem has to respect several aspects

- 1. The individual (structural) potential of the athlete.
- 2. How long does a special structure / system need to adapt under SHORT term aspects?
- 3. How long does a structure / system need to adapt under a LONG term aspect?
- 4. What is the (adaptation) level where I start from?
- 5. What is model what stands behind the question of adaptation?


Behaviour of different biological parameters of a group of medium trained persons during a two year period (SALTIN, 1976)

Mitochondria - Powerhouse of the cell

Mitochondria:

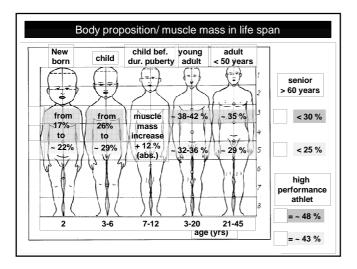
Site of aerobic respiration

- Amount -
- Size
- Surface
- Location
- Volume (+ 500%)

Dynamics of VO₂max in an international-level female skier

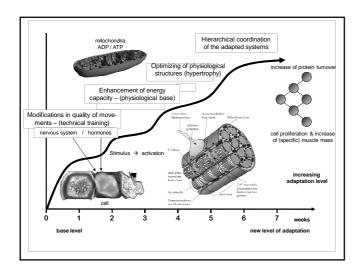
VO₂max

80


73,4

68,2

40

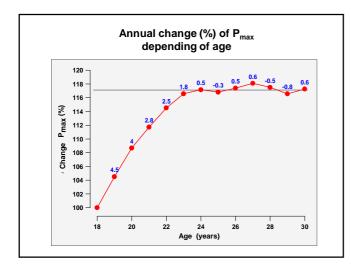

June Oct. Jan. April Setp. March
1979 1979 1980 1980 1980 1981

(Viru, A. & Viru, M., 2001, p. 166)

The problem has to respect several aspects

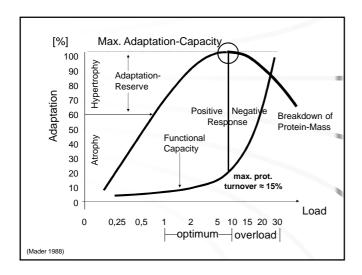
- ${\bf 1.} \ \ {\bf The\ individual\ (structural)\ potential\ of\ the\ athlete}.$
- 2. How long does a special structure / system need to adapt under SHORT term aspects?
- 3. How long does a structure / system need to adapt under a LONG term aspect?
- 4. What is the (adaptation) level where I start from?
- 5. What is model what stands behind the question of adaptation?

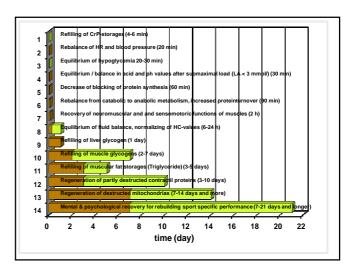
The problem has to respect several aspects

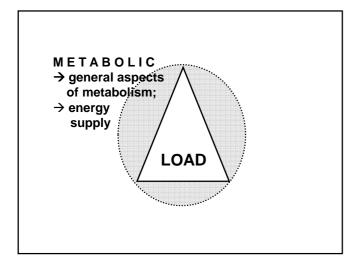

- 1. The individual (structural) potential of the athlete.
- 2. How long does a special structure / system need to adapt under SHORT term aspects?
- 3. How long does a structure / system need to adapt under a LONG term aspect?
- 4. What is the (adaptation) level where I start from?
- 5. What is model what stands behind the question of adaptation?

Results of a questionnaire concerning the development of long time performance in 28 sport events (IAT-Leipzig, 1991)

			acr. orts		rance orts		nbat orts	gan		force- city s		on w	rater orts	oth spo	
regular training	М	6,5	0,5	9,4	1,3	9,3	1,0	8,3	2,1	9,3	1,3	10,0	10,0	9,3	1,1
begin; age (yrs)	F	6,2	0,3	9,3	1,4	8,5	0,7	7,0	1,0	9,3	1,5			9,3	1,1
duration (yrs) until															
- level of high	М	10,2	0,3	10,1	2,1	10,3	3,4	10,3	1,2	11,0	3,8	11,0	1,0	12,0	2,8
performance	F	8,3	0,5	9,4	1,7	10,0	4,2	10,3	1,1	11,8	4,0	7,0	1,0	11,0	1,8
- C-squad level	М	9,6	0,8	8,9	2,0	8,4	2,1	8,5	0,7	8,8	0,5	7,0	1,0	10,7	1,8
	F	7,9	1,8	8,6	1,6					9,7	0,7	7,0	1,0	10,0	2,1
- int. junior	М	11,8	0,6	8,4	1,6	10,5	1,3	12,2	0,9	9,7	0,8	9,0		11,7	2,8
level	F	10,8	1,4	9,3	1,9	11,0	0,7	13,5	0,7	9,7		9,0		11,0	2,8
- int. senior	М	10,8	1,2	10,2	1,8	10,0	1,7	11,7	1,4	10,3	1,6	8,0	1,0		
level	F	9,3	1,9	9,8	1,8	9,5	2,8	11,0	1,4	9,7	1,7	7,0	1,0		
- max. individ.	М	14,5	2,0	14,6	2,3	14,8	1,0	19,9	2,8	15,8	1,8	15,0	2,2		
performance	F	12,8	2,2	13,0	2,5	14,0	0,7	18,8	3,0	13,8	3,0	11,5	2,4		

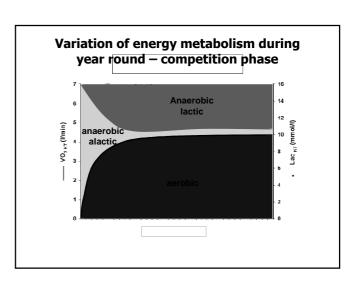

The problem has to respect several aspects

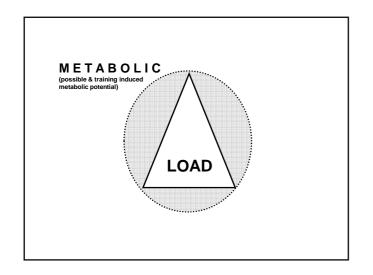

- 1. The individual (structural) potential of the athlete.
- 2. How long does a special structure / system need to adapt under SHORT term aspects?
- 3. How long does a structure / system need to adapt under a LONG term aspect?
- 4. What is the (adaptation) level where I start from?
- 5. What is model what stands behind the question of adaptation?



The problem has to respect several aspects

- 1. The individual (structural) potential of the athlete.
- 2. How long does a special structure / system need to adapt under SHORT term aspects?
- 3. How long does a structure / system need to adapt under a LONG term aspect?
- 4. What is the (adaptation) level where I start from?
- 5. What is model what stands behind the question of adaptation?





The interaction of the oxidative and the glycolytic system

- 1. Oxidative share needs long time to develop
- 2. Oxidative share is never too big
- 3. Glycolytic share needs only short time to increase
- 4. Glycolytic system is very limited in development
- Is seldomly too small, mostly too big (specifity of training)
- 6. None system can be trained independently.

How to train?

Consequences for the practice?

Knowledge about the load / energetic profile of the sport / discipline

Individuality of muscles fibers would be good to know

Increase of amount, intensity more seldom

Training load must be orientated at the energy/caloric turnover

Training schedules are recommendations, no bibles.

Effects of moderator variables on overall effect size for taper-induced changes in performance (I) Categories Overall Effect Si Mean (95 % CI) ≤ 20 % -0.02 (-0.32, 0.27) 152 21 - 40 % 0.27 (0.04, 0.49) 90 0.02 0.27 (-0.03, 0.57) Decrease in training inten No 0.33 (0.19, 0.47) 415 0.000 Categories Overall Effect Size: Mean (95 % CI) 0.24 (-0.03, 0.52) 176

Categories	Overall Effect Size: Mean (95 % CI)	N	P
Duration of the taper			
≤ 7 d	0.17 (-0.05, 0.38)	164	0.14
8 – 14 d	0.59 (0.26, 0.92)	176	0.0005
15 – 21 d	0.28 (-0.02, 0.59)	84	0.07
≥ 22 d	0.31 (-0.14, 0.75)	54	0.18
Pattern of the taper	Mean (95 % CI)		
Categories	Overall Effect Size: Mean (95 % CI)	N	P
Yes	0.42 (-0.11, 0.95)	98	0.12
No	0.30 (0.16, 0.45)	380	0.0001
<u> </u>		nonon111101	

Effects of moderator variables on effect size (EF) for taperinduced changes in swimming, running, and cycling performance Swimming Categories Mean EF (95 % CI) N Decrease in training volume -0.04 (-0.36, 0.29) 91 70 21 - 40 % 0,18 (-0.11, 0.47) 0.81 (0.42, 1.20) ≥ 60 % 0.03 (-0.66, 0.73) 16 Mean EF (95 % CI) N Categorie 0.08 (-0.34, 0.49) 204 Categories Mean EF (95 % CI) -0.35 (-0.36, 1.05)

ories	Mean EF (95 % CI)	N
on of the taper		
	-0.03 (-0.41, 0.35)	54
d	0.45 (-0.01, 0,90)##	84
1 d	0.33 (0.00, 0,65)#	75
	0.39 (-0.08, 0.86)	36
ories	Mean EF (95 % CI)	N
n of the taper		
per	0.10 (-0.65, 0.85)	14
ssive taper	0.27 (0.08, 0.45)*	235
n of the taper aper	0.10 (-0.65, 0.85)	14

Effects of moderator variables on effect size for taper induced changes in swimming, running, and cycling performance

Running

Categories	Mean EF (95 % CI)	N
Decrease in training volum		
≤ 20 %	No data available	
21 - 40 %	0.47 (-0.05, 1.00)##	30
41 - 60 %	0.23 (-0.52, 0.98)	14
≥ 60 %	0.21 (-0.14, 0.56)	66

Categories	Mean EF (95 % CI)	N
Decrease in training intens	ity	
Yes	-0.72 (-1.63, 0.19)	10
No	0.53 (0.05, 1.01)*	100

Categories	ies Mean EF (95 % CI)		
Decrease in training frequ	ency		
Yes	0.16 (-0.17, 0.49)	74	
No	0.53 (0.05, 1.01)#	36	

Effects of moderator variables on effect size for taper induced changes in swimming, running, and cycling performance

Running

Categories	Mean EF (95 % CI)	N
Duration of the taper		
≤ 7 d	0.31 (-0.08, 0.70)	52
8 – 14 d	0.58 (0.12, 1.05)*	38
15 – 21 d	-0.08 (-0.95, 0.80)	10
≥ 22 d	-0.72 (-1.63, 0.19)	10

Categories	Mean EF (95 % CI)	N			
Pattern of the taper					
Step taper	-0.09 (-0.56, 0.38)	36			
Progressive taper	0.46 (0.13, 0.80)*	74			

Effects of moderator variables on effect size for taper-induced changes in swimming, running, and cycling performance

Cycling

Categories	Mean EF (95 % CI)	N
Decrease in training volume		
≤ 20 %	0.03 (-0.62, 0,69)	18
21 - 40 %	0.84 (-0.05, 1.74)##	111
41 - 60 %	2.14 (-1.33, 5.62)	15
≥ 60 %	0.56 (-0.24, 1.35)	36

Categories	Mean EF (95 % CI)	N			
Decrease in training intensity					
Yes	0.25 (-0.73, 1.24)	8			
No	0.68 (0.09, 1.27)#	72			

Categories	Mean EF (95 % CI)	N				
Decrease in training frequency						
Yes	0.95 (-0.48, 2.38)	25				
No	0.55 (-0.55, 1.15)##	55				

Effects of moderator variables on effect size for taper induced changes in swimming, running, and cycling performance

Cycling

Categories	Mean EF (95 % CI)	N			
Duration of the taper					
≤ 7 d	0.29 (-0.12, 0.70)	47			
8 – 14 d	1.59 (-0.01, 3.19)	33			
15 – 21 d	No data available				
≥ 22 d	No data available				

Categories	Mean EF (95 % CI)	N
Pattern of the taper		
Step taper	2.16 (-0.15, 4.47)	25

3

2015

Estonian Coaches Seminar, Tallinn

Summary:

1. Existing points of view about adaptation and periodisation have their origins in the "Russian school"

- 2. It is a phenomenological way of thinking
- 3. It has no respect to biology
- 4. It includes a hypothetic / self full-filling assumption of possible adaptations ("master s teaching")
- Adaptation and periodisation show in athletes very individual responses depending of many other influencing factors (age, level of performance, load tolerance etc.)
- 6. There are only few existing (energy) demand / load profiles and its specific adaptation in disciplines.

